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 Abstract—The paper presents two new techniques to 

measure the basic kinematically-relevant parameters of an 

involute helical gear. The techniques require taking only span 

and overpin measurements of the inspected gear. Among the 

output data of the suggested techniques is the base helix angle, a 

parameter that is commonly detected only by specific checking 

instruments. The suggested methods complement an already 

know procedure and, together with it, find application in 

classroom practice on gear geometry and whenever all basic 

dimensions of an involute helical gear have to be estimated 

without resorting to a gear inspection department. A numerical 

example shows application of one of the presented techniques to 

a case study. 
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I. Introductions 

The existing techniques for inspecting spur or helical 

involute gears cover a broad spectrum of purposes with 

different degrees of measurement accuracies ([1]-[3]). 

Most of these techniques require specific measuring 

instruments commonly found only in the checking 

departments of gear manufactures. 

Although less sophisticated than other inspection 

techniques, the span measurement and the overpin 

measurement are so direct and require so simple an 

instrumentation that they can be taken advantage of even 

outside gear inspection rooms, namely, on the production 

floor or in the field. For the same reasons, the span and 

overpin measurements are also the gear measuring 

techniques that prove most suited to be demonstrated to 

engineering students and practiced by them in order to 

gain a better grasp of the geometry of involute gears. 

As is known, all fundamental geometric parameters of 

an involute spur gear can be estimated by a few span 

measurements ([4], [5]). Unfortunately, the same does not 

hold for an involute helical gear, because no information 

about the base helix angle (or, equivalently, the lead of the 

involute helicoids) can be gained by span measurements 

only. The simplest known technique for measuring the 

base helix angle of an involute gear is perhaps the one that 

requires the inspected gear to be placed on a sine bar [6]. 

Nevertheless this method, together with the several others 

that take advantage of purposely-designed checking 

instruments and CNC inspection machinery, is not suited 

to be employed outside gear inspection departments. A 

few years ago, an interesting procedure has been 

presented in [7] to estimate the base helix angle of 

external involute gears by relying on one overpin 

measurement and two span measurements. 

This paper builds on the ideas presented in [7] by 

suggesting two novel procedures that complement the 

existent one to form a homogeneous family of techniques 

for measuring the base helix angle of involute gears. 

Common feature to all of these techniques is the need to 

execute three measurements of the overpin or span types. 

Specifically, the two new procedures presented in this 

paper require, respectively, two and three overpin 

measurements of the inspected gear. 

Differently from the already known procedure, one or 

both of the new techniques are applicable even to thin 

external helical gears and also to internal spur or helical 

gears. In any case, based on the outcome of the three 

measurements, a univariate transcendental equation is 

obtained whose root allows the sought-for base helix 

angle do be determined. 

Finally a numerical example shows application of one 

of the proposed techniques to a case study. 

II. Background information 

The key parameters of an involute helical gear are the 

number z of teeth, the radius ρ of the base cylinder, the 

base helix angle βb, and the base transverse tooth 

thickness sb. All these parameters, with the exception of z, 

are shown in Fig. 1. (Regardless of the actual radial extent 

of the tooth flanks, the involute helicoids of a tooth are 

shown in Fig. 1 as extending inwards up to the base 

cylinder.) 

Quantities such as the transverse and normal modules m 

and mn, the transverse and normal pressure angles α and 

αn, etc. ([8], [9]), do not directly characterize the gear. 

Rather, they refer to both the rack cutter that is ideally 

able to generate the gear, and the setting of such a tool 

relative to the gear being cut. Because infinitely many 

rack cutters can be used to generate the same gear, none of 

them should be bestowed, in principle, with the role of 

characterizing the gear. Despite this, and due to the 

existence of series of normalized normal modules [10] and 

commonly-selected values for the pressure angle of rack 

cutters, the attempt will be shown further on to single out 

the possible rack cutter with normalized parameters that is  
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capable of generating an involute gear characterized by a 

given set of values for z, ρ, βb, and sb. 

Additional geometric parameters such as tip diameter, 

root diameter, etc., will be disregarded in this paper. 

A. The span measurement 

The span (or Wildhaber) measurement Wk of an external 

helical involute gear as a function of the basic geometric 

parameters of the gear is provided by ([1]-[8]) 

 ( )1
k bn bn

W k p s= − +  (1) 

where k is the number of gear teeth interposed between 

the disc anvils of the micrometer; pbn is the normal base 

pitch of the gear ([8]), i.e., the distance – measured on the 

base cylinder – between the base helices of homologous 

involute helicoids of two adjacent teeth (it is also the 

linear distance between the aforementioned involute 

helicoids); and sbn is the base normal thickness of a tooth, 

i.e., the distance – measured on the base cylinder – 

between the two base helices of the same tooth. Quantity 

pbn is related to the transverse base pitch pb by the 

following condition ([8]) 

 cos
bn b b

p p β=  (2) 

where pb is obviously given by 

 
2

bp
z

π ρ
=  (3) 

Similarly, the relationship between the base normal 

thickness sbn and the transverse normal thickness sb is 

 cos
bn b b
s s= β  (4) 

As is known, the span measurement is feasible only if the 

width L of the gear satisfies the following inequality 

 sin
k b

L W β>  (5) 

B. The overpin measurement 

For the measurement over pins (or balls), the distance e 

of the pin axes (ball centers) from the gear axis is related 

to the measured value Fa by the ensuing condition ([1]- 

[4], [8], [9]) 

 

2sin int
2

a
F a

e
z

z

π
=

  
    

m
 (6) 

where a is the diameter of both pins (balls) and int(.) is the 

function that returns the integer part of its argument. In 

Eq. (6) and in the sequel of this subsection, the upper or 

lower sign has to be used depending on whether the gear 

is external or, respectively, internal. 

In turn, quantity e depends both on the basic geometric 

parameters of the inspected gear and on the pin diameter 

according to the following expression 

 
cos

e
ρ
ϑ

=  (7) 

In Eq. (7) angle ϑ is implicitly provided by 

 inv
2 cos

bn

b

s a

z

π
ϑ

ρ β
 +

= ± − 
 

 (8) 

Function inv(.) appearing in Eq. (8) is defined by 

 inv tanu u u= −  (9) 

In evaluating the right-hand side of Eq. (9), angle u has to 

be expressed in radians. 

III. The three measuring techniques 

This section will briefly review the existing measuring 

technique [7] and presents the new ones. All three 

techniques will be explained by referring to external 

gears, though the last one is suitable for internal gears too. 

A. Two span measurement and one overpin measurements 

Once it has been recognized that the fundamental 

geometric parameters of an involute gear are four (z, ρ, βb, 

and sb, or equivalently – thanks to Eq. (4) – z, ρ, βb, and 

sbn) it is a matter of course that three distinct 

measurements are necessary – in addition to the count of 

the number z of teeth – in order to identify a gear. 

According to the procedure presented in [7], two span 

measurements have to be taken with different values of k, 

for instance, k and 1k + . These two measurements allow 

linear determination of quantities pbn and sbn ([4], see also 

Eqs. (1)) 

 

βb 

sb 

ρ 
 

 
 

Fig. 1. Key parameters of an involute helical gear. 
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1bn k k

p W W+= −  (10) 

 ( ) 1
1bn k k

s k W k W += − −  (11) 

Quantity sbn is one of the four elemental parameters of 

the gear. As for pbn, its known value is instrumental in 

laying down an equation in the remaining unknown 

parameters, i.e., ρ and βb. By merging Eqs. (2) and (3), the 

ensuing condition is obtained 

 cos
2

bn
b

z p
ρ β

π
=  (12) 

whose right-hand side has to be considered as known (Eq. 

(10)). 

The last of the required measurements is the overpin 

measurement Fa, taken with pins of known diameter a. 

This measurement results in a value for parameter e (see 

Eq. (6)). An equation set composed of Eqs. (7), (8), and 

(12) can now be considered that has ρ, βb, and ϑ as 

unknowns. Insertion of expression (12) for ρ cosβb into 

Eq. (8) leads to 

 inv 1bn

bn

s a

z p

π
ϑ

 +
= − 

 
 (13) 

All quantities on the right-hand side of Eq. (13) are known 

a priori (pin or ball diameter a), or have already been 

determined (z, sbn, and pbn). Therefore Eq. (13) – which 

has a classical form in involutometry – can be solved for 

unknown ϑ by a numeric iterative algorithm (bisection, 

Newton-Raphson, etc.). 

Once the value of ϑ has been determined, Eq. (7) 

linearly yields the value of ρ 

 coseρ ϑ=  (14) 

Finally the base helix angle βb can be found via Eq. (12) 

 
1

cos
2

bn
b

z p
β

π ρ
−  

=  
 

 (15) 

This concludes determination of the four basic 

parameters of the inspected gear, i.e., z, ρ, βb, and sbn. If sb 

is of interest instead of sbn, then Eq. (4) simply allows 

such a replacement. 

B. One span measurement and two overpin measurements 

The first of the proposed new techniques is presented 

hereafter. 

As soon as the outcome of one span measurements Wk 

and two overpin measurements Fa1 and Fa2 are available, 

it is possible to lay down the following set of six 

equations (see Eqs. (1), (12), (13), and (7)) 

 

( )

1
1

2
2

1

1

2

2

1

cos
2

inv 1

inv 1

cos

cos

k bn bn

bn
b

bn

bn

bn

bn

W k p s

z p

s a

z p

s a

z p

e

e

ρ β
π

π
ϑ

π
ϑ

ρ
ϑ

ρ
ϑ

= − +

 =



 + = −   
  +

= −  
 


=




=


 (16) 

where quantities ei (i=1,2) are given by (see Eq. (6)) 

 ( )1,2

2sin int
2

ai i
i

F a
e i

z

z

π
−

= =
  

    

 (17) 

In Eq. (17), a1 and a2 are the known diameters of the first 

and second pairs of identical pins (or balls). Equation set 

(16) has six unknowns, namely, pbn, sbn, ρ, βb, ϑ1, and ϑ2, 

which can be determined as shown hereafter. 

The expression of sbn obtainable from the first of Eqs. 

(16) is first inserted into the third and fourth of Eqs. (16) 

 ( )
inv

1
1,2

i

k i bn

z
k

i
W a p

ϑ
π

+
= =

+
 (18) 

By equating the left-hand sides of Eqs. (18) for i=1 and 

i =2, the ensuing condition can be derived 

( ) ( ) ( )2 1 1 2 2 1inv inv 0k k

k
W a W a a a

z

π
ϑ ϑ+ − + + − =  (19) 

Now the last two of Eqs. (16) are solved for ϑ1 and ϑ2 

 ( )1
cos 1,2i

i

i
e

ρ
ϑ −= =  (20) 

These expressions for ϑ1 and ϑ2 are inserted into Eq. (19) 

 

( )

( )

( )

2 2 1

2 1

1

2 2 1

1 2

2

2 1

cos

cos

0

k

k

W a e
e

W a e
e

k
a a

z

ρ
ρ ρ

ρ
ρ ρ

π ρ

−

−

 
+ − − 

 

 
− + − − 

 

+ − =

 (21) 

Equation (21) contains the radius of the base cylinder, ρ, 

as only unknown, which can therefore be determined by 

resorting to a numeric algorithm for solving univariate 

transcendental equations. Subsequently, once ϑ1 has been 

computed by the first of Eqs. (20), the first of Eqs. (18) 
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yields the value of pbn. Now the first two conditions in Eq. 

(16) can be solved for sbn and βb respectively, thus 

completing the identification of the geometry of the 

inspected gear in terms of parameters z, ρ, βb, and sbn. 

C. Three overpin measurements 

The second of the proposed new techniques is explained 

in the following. It requires no span measurement and 

three overpin measurements, Fa1, Fa2, and Fa3, taken by 

three pairs of pins (or ball) having diameters a1, a2, and a3. 

At first, quantities ei (i=1,2,3) are obtained by Eq. (6), 

here re-written for the sake of clarity 

 ( )1,2,3

2sin int
2

ai i
i

F a
e i

z

z

π
−

= =
  

    

 (22) 

Rearrangement of Eq. (8) leads to 

( )inv 2 cos 0 1,2,3
i b bn i

s a i
z

π
ϑ ρ β + − − = = 

 
 (23) 

If re-written in vector form, Eq. (23) becomes 

 

2 cos

1

b

bn
s

ρ β 
  = 
  

M 0  (24) 

where matrix M has the ensuing expression 

 

1 1

2 2

3 3

inv 1

inv 1

inv 1

a
z

a
z

a
z

π
ϑ

π
ϑ

π
ϑ

 + − − 
 
 = + − −
 
 
 + − −
  

M  (25) 

Equation (24) can be regarded as a homogeneous linear 

set of three equations that have the components of vector 

( )2 cos , , 1
T

b bn
sρ β as unknowns. Since such a vector 

cannot vanish − its last component is unitary − matrix M 

has to be singular, which implies the ensuing condition 

 det 0=M  (26) 

By considering Eq. (25), Eq. (26) translates into 

 
( ) ( )

( )
3 2 1 1 3 2

2 1 3

inv inv

inv 0

a a a a

a a

ϑ ϑ

ϑ

− + −

+ − =
 (27) 

At this point, the relations that corresponds to Eq. (7) 

are considered 

 ( )1
cos 1,2,3i

i

i
e

ρ
ϑ −= =  (28) 

By inserting expressions (28) for ϑi (i=1,2,3) into Eq. 

(27), an equations that has the radius of the base cylinder, 

ρ, as the only unknown is obtained 

 

( )

( )

( )

2 2 1

3 2 1

1

2 2 1

1 3 2

2

2 2 1

2 1 3

3

cos

cos

cos 0

a a e
e

a a e
e

a a e
e

ρ
ρ ρ

ρ
ρ ρ

ρ
ρ ρ

−

−

−

 
− − − 

 

 
+ − − − 

 

 
+ − − − = 

 

 (29) 

Once the value of ρ that satisfies Eq. (29) has been 

found by a numeric algorithm, its replacement into Eq. 

(28) leads to determination of angles ϑi (i=1,2,3). Now M 

(Eq. (25)) can be considered as a singular matrix 

composed of numbers (see Eq. (26)), and Eq. (24) can be 

regarded as an over-constrained set of three non-

homogeneous linearly-dependent equations in two 

unknowns, namely, quantities 2ρ 
cosβb and sbn. These can 

be linearly determined by considering only two of the 

three conditions embedded into Eq. (24). As soon as the 

value of 2ρ 
cosβb has been found, determining βb is a 

trivial task (ρ is already known). This concludes 

identification of the basic geometry of the inspected 

helical involute gear in terms of parameters z, ρ, βb, and 

sbn. 

Differently from the previous two techniques, this last 

technique is also applicable to external helical gear whose 

width is too small for Eq. (5) to be satisfied for one or two 

values of k (second and first technique respectively). 

Moreover, it is the only technique out of the three dealt 

with in this paper that can be applied to internal helical 

involute gears, provided that balls are used instead of 

rollers and Eqs. (22), (23), and (25) are suitably modified 

to incorporate the choice of the lower signs in Eqs. (6) and 

(8). 

IV. Remarks 

A. Determining the customary gear parameters 

A few comment are provided hereafter about some 

auxiliary parameters commonly mentioned while 

describing the geometry of a gear. These parameters do 

not add on to the information yielded by the four basic 

parameters previously determined, i.e., z, ρ, βb, and sbn. 

Rather, they translate the already-available knowledge 

about the geometry of the inspected gear into data on the 

geometry and the setting of the rack cutter that has (or 

might have) been used to generate the gear. 

Any involute gear has in common the normal base 

pitch, pbn, with any other gear or cutting tool – hob, pinion 

cutter, rack cutter, etc. – able to mesh with it. For the 

inspected gear, quantity pbn can be computed by first 

determining pb via Eq. (3) and inserting its value into Eq. 

(2). In turn, pbn depends on the pitch, π mn, of the rack 
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cutter that is potentially able to generate the gear ([8]) 

 cos
bn n n

p mπ α=  (30) 

Quantities mn and αn appearing in Eq. (30) are, as is 

known, the module and the pressure angle of the rack 

cutter. Despite the existence of infinite pairs of values for 

mn and αn that satisfy Eq. (30), there is the chance that the 

inspected gear has been obtained by a cutter that has 

normalized dimensions. Should this be the case, mn and αn 

can be identified after a few attempts (generally is αn=20°, 

less frequently-used values being 14.5°, 15°, 17°, 22.5°, 

25°, and 30°; the series of normalized values of mn is 

traceable in standardization tables [10]). 

Once mn and αn have been singled out, it is possible to 

complement the auxiliary information on the inspected 

gear by computing the two setting parameters of the rack 

cutter with respect to the gear, namely, the cutting helix 

angle β and the profile shift x. The former is the angle 

between the generators of the teeth of the rack cutter and 

the axis of the gear, whereas the latter is the distance (with 

sign) between two parallel planes fixed to the rack cutter: 

one is the reference plane of the rack (i.e., the plane on 

which the thickness of the rack teeth matches the width of 

the rack tooth spaces), whereas the other is the plane that 

rolls − while the gear is being generated by the rack cutter 

− on an ideal cylinder coaxial with the gear. 

Angle β is implicitly given by ([8]) 

 
sin

sin
cos

b

n

β
β

α
=  (31) 

The profile shift x can be obtained by ([8]) 

 

cos inv
cos 2

2 sin

bn

b

s
m z

x

π
α α

β
α

 − + 
 =  (32) 

where m (the transverse module) and α (the so-called 

transverse pressure angle) are given by ([8]) 

 
cos

n
m

m
β

=  (33) 

 
sin

sin
cos

n

b

α
α

β
=  (34) 

At this point it is left to the reader the final choice on 

whether to identify a helical involute gear by four 

parameters (z, ρ, βb, sbn) or five parameters (z, mn, αn, β, 

x). In favor of the four-parameter choice is the one-to-one 

correspondence between sets of parameters and gears, 

whereas infinitely-many five-parameter sets identify the 

same gear. The only real advantage of the five-parameter 

choice is the explicit reference to the geometry and setting 

of a rack cutter by which the gear can be obtained. 

Although such a rack cutter is one out of the infinitely-

many that are apt to generate the gear, most frequently it 

is also the only one characterized by normalized values of 

mn and αn. 

B. Accuracy issues and limitations 

The three techniques described in section III all lay on 

rigorous grounds and would result in the same outcome if 

applied to a perfect helical involute gear. Despite this, in 

practice the accuracy of their results tends to decrease 

from the first to the third technique. The reason is mainly 

due to potential ill-conditioning of the set of equations to 

be solved: if two overpin measurements of the same gear 

were executed with two pairs of pins whose diameters 

differs only slightly, the minuscule geometric difference 

detectable, in principle, by the two measurements would 

be almost completely masked by the finite accuracy that 

affects the adopted measuring instrument, so that 

inaccurate results would be obtained. Therefore, if two or 

more overpin measurements of a gear are required, care 

must be paid in selecting as far apart from each other as 

possible the diameters of different pairs of pins, still 

preserving the correct contact between the pins and the 

portion of involute helicoids on the tooth flanks (to this 

end, the pins with the smallest diameter could be flattened 

in order to make them reach the inner part of the involute 

helicoids while avoiding contact with the root cylinder of 

the gear). As a rule, if more than one technique is 

applicable to the case at hand, preference should be 

granted to the technique that requires the lowest number 

of overpin measurements. 

All three methods described in the previous section are 

expected to show a declining accuracy as the base helix 

angle βb approaches zero. Should this occur, a small error 

affecting the argument of the cos
−1

 function on the right-

hand side of Eq. (15) would translate into a great 

uncertainty about the cos
−1

 value. Fortunately, involute 

helical gears that are almost spur gears are quite 

uncommon, and the limitation just outlined is seldom 

relevant. 

In any case, even in the most favousable conditions, the 

accuracy associated to the value of βb assessed by any of 

the explained procedures is no match for the higher 

accuracy attainable by state-of-the-art gear inspection 

apparatuses. These are equipped with measuring devices 

that are more precise than 0.01 mm-accurate micrometers, 

and can make their feeler run along the full span L of the 

gear width in order to accurately determine the lead of the 

helicoidal tooth flanks. Nevertheless the proposed 

inspection method proves valuable whenever special 

checking equipment is unavailable or unjustified. 

The three techniques dealt with in this paper are not 

applicable to spur gears (βb = 0). In case the radius ρ of 

the base cylinder and the base tooth thickness sb of a spur 

gear have to be assessed, the three presented techniques 

should be modified so as to drop one overpin 

measurement from each of them. For instance, the three 
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span measurement technique reported in [7] would 

transform into the the span measurement procedure 

explained in [4] and [5] for determining parameters ρ and 

sbn (see Eqs. (10)-(12)). Detailed description of how the 

remaining two techniques should be specialized for spur 

gears is beyond the scope of this paper. 

V. Numerical example 

Application of the third procedure explained in section 

III is here shown with reference to an external involute 

helical gear that, upon inspection, has provided the 

following measured data 

 
3

4.5

6

z = 31

= 89.91 mm

= 95.57 mm

= 100.56 mm

F

F

F

 (35) 

It is hypothesized that the three measurements over 

balls, F3, F4.5, and F6 are taken by standard handheld 

micrometers, whose accuracy is usually 0.01 mm. The 

three pairs of balls are characterized by the following 

diameters: a1=3.000 mm, a2=4.500 mm, and a3=6.000 

mm. 

The values of ei (i=1,2,3) provided by Eq. (22) are  

 

1

2

3

= 43.5108 mm

= 45.5935 mm

= 47.3408 mm

e

e

e

 (36) 

(Irrespectively of the accuracy affecting the input data, 

intermediate and final results are here expressed by four 

decimal digits in order to allow the reader to thoroughly 

check the reported computations.) 

Equation (29) is satisfied by the following root 

 = 40.7512 mmρ  (37) 

Finally, linear solution of equation set (24) leads to the 

remaining two basic parameters of the considered gear 

 = 26.5641 deg
b
β  (38) 

 = 5.5636 mm
bn
s  (39) 

As already pointed out, the value of z (Eq. (35)), 

together with the values of parameters ρ, βb, and sbn (Eqs. 

(37)-(39)) completely define the basic geometry of the 

inspected gear (i.e., the shape of the involute helicoids and 

their spacing around the base cylinder). Alternatively, 

parameter sbn can be replaced by parameter sb (see Eq. (4)) 

 = 6.2202 mm
b
s  (40) 

Now the attempt will be made of estimating the 

ancillary parameters mn, αn, β, and x. For the value of pbn 

provided by Eqs. (3) and (2), by also presuming αn = 20°, 

Eq. (30) yields 

 = 2.5025 mm
n

m  (41) 

which is very close to the normalized value mn = 2.5 mm 

([10]). It is therefore reasonable to consider the inspected 

gear as characterized by αn = 20° and mn = 2.5 mm. 

Based on Eq. (31), the value of β is determined 

 = 28.4179°β  (42) 

Finally, Eq. (32) yields the value of the profile shift x 

 = 0.4464 mmx  (43) 

VI. Conclusion 

The paper has presented two new and easy-to-

implement methods applicable to a helical involute gear 

for measuring its basic geometric parameters and, among 

these, the base helix angle. Similarly to an already known 

procedure, the proposed methods require taking two or 

three measurements over pins, together with one or no 

span measurement respectively. Common micrometers 

with standard and disc anvils, together with pairs of 

calibrated rollers or balls, are the only needed inspection 

equipment. 

Differently from the already known method, one of the 

proposed methods can be applied to internal helical 

involute gears too. 

A numerical example has shown application of one of 

the presented techniques to a case study. 
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